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Abstract—In this paper, stationary random processes with fuzzy states are studied. The
properties of their numerical characteristics—fuzzy expectations, expectations, and covariance
functions—are established. The spectral representation of the covariance function, the gen-
eralized Wiener–Khinchin theorem, is proved. The main attention is paid to the problem of
transforming a stationary fuzzy random process (signal) by a linear dynamic system. Explicit-
form relationships are obtained for the fuzzy expectations (and expectations) of input and
output stationary fuzzy random processes. An algorithm is developed and justified to calculate
the covariance function of a stationary fuzzy random process at the output of a linear dynamic
system from the covariance function of a stationary input fuzzy random process. The results
rest on the properties of fuzzy random variables and numerical random processes. Triangular
fuzzy random processes are considered as examples.
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1. INTRODUCTION

In this paper, continuous random processes with fuzzy states (fuzzy random processes) are
studied. Specifically, the time variable and the set of possible fuzzy states are considered to be
continuous. The cross-section of a continuous fuzzy random process at any time instant is a fuzzy
random variable. We apply the well-known results of fuzzy modeling [1, 2] and the theory of fuzzy
random variables [3–5] and classical results of the theory of real random processes [6, 7].

This work continues the previous research on the theory of continuous random processes with
fuzzy states [8]. In particular, the properties of the fuzzy expectations, expectations, and covariance
functions of continuous fuzzy random processes were studied, and the relationship between the
characteristics of fuzzy random signals at the input and output of a linear dynamic system was
investigated using the Green function method.

Below, we introduce and analyze stationary fuzzy random processes, proving the spectral rep-
resentation of the covariance function (the generalized Wiener–Khinchin theorem). Based on this
theorem, we propose and justify an algorithm for calculating the characteristics of a stationary fuzzy
random process (signal) at the output of a linear dynamic system, namely, its fuzzy expectation,
expectation, and covariance functions, from the corresponding characteristics of the input fuzzy
random process (signal). The results obtained in this area develop to the fuzzy case the well-known
ones for real continuous random processes; for example, see [6, Chapter 7; 7, Chapter VII].
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424 KHATSKEVICH

Let us emphasize the difference between the approach and results of this paper and the studies
on continuous-time random processes with discrete fuzzy states. For example, fuzzy queueing sys-
tems were discussed in [9–12]; stochastic fuzzy dynamic automatic control systems were considered
in [13, 14]. At the same time, stationary fuzzy random processes and their covariance functions
were not addressed in the publications cited above.

In what follows, a fuzzy number z̃ defined on the universal space R of real numbers is understood
as a set of ordered pairs (x, µz̃(x)), where the membership function µz̃ : R → [0, 1] determines the
degree (grade) of membership ∀x ∈ R to the set z̃ [1, Chapter 5]. In this paper, the interval
representation of fuzzy numbers is used [1, Chapter 5]. In this case, the α-level set of a fuzzy
number z̃ with a membership function µz̃(x) is defined as Zα = {x|µz̃(x) > α} (α ∈ (0, 1]), Z0 =
cl{x|µz̃(x) > 0}, where cl indicates the closure of an appropriate set.

Assume that all α-levels of a fuzzy number are closed and bounded intervals of the real axis.
Thus, Zα = [z−(α), z+(α)], where z−(α) and z+(α) are the left and right α-indices of a fuzzy
number, respectively.

We will consider the set J of fuzzy numbers for which the indices z±(α) satisfy the following
standard conditions:

1. z−(α) 6 z+(α), ∀α ∈ [0, 1].

2. The function z−(α) is bounded, nondecreasing, left-continuous on the interval (0, 1], and
right-continuous at the point 0.

3. The function z+(α) is bounded, nonincreasing, left-continuous on the interval (0, 1], and
right-continuous at the point 0.

The sum of fuzzy numbers is a fuzzy number whose indices represent the sums of the corre-
sponding indices of the summands. Multiplication of a fuzzy number by a positive real number
means multiplying its indices by the latter number. Multiplication of a fuzzy number by a negative
real number means multiplying its indices by the latter number and reversing them. Equality of
fuzzy numbers is understood as equality of the corresponding α-indices (∀α ∈ [0, 1]).

A real number r is associated with a fuzzy number whose left and right α-indices coincide with r

∀α ∈ [0, 1].

2. THE FUZZY EXPECTATIONS, EXPECTATIONS, AND COVARIANCES
OF FUZZY RANDOM VARIABLES

Let (Ω,Σ, P ) be a probability space, where Ω denotes the set of elementary events, Σ is a σ-al-
gebra consisting of all subsets of the set Ω, and P is a probability measure. Consider a mapping
X̃ : Ω→ J. For a fixed ω ∈Ω, its α-level intervalsXα(ω) are given byXα(ω) = {r ∈R : µX̃(ω)(r)> α}

α ∈ (0, 1], X0(ω) = cl{µX̃(ω)(r) > 0}, where µX̃(ω)(r) means the membership function of the fuzzy

number X̃(ω). An interval Xα(ω) can be represented as Xα(ω) = [X−(ω,α),X+(ω,α)], and the
bounds X−(ω,α) and X+(ω,α) are called the left and right α-indices of X̃(ω), respectively.

A mapping X̃ : Ω → J is called a fuzzy random variable (FRV) if the real-valued functions
X±(ω,α) are measurable in ω ∀α ∈ [0, 1]; for example, see [3, 4]. In this case, α-indices are real
random variables ∀α ∈ [0, 1].

We will consider the class X− of FRVs for which the indices X−(ω,α) and X+(ω,α) are square
summable on Ω× [0, 1]. Let

x−(α) = EX−(ω,α), x+(α) = EX+(ω,α). (1)

Throughout this paper, E means the expectation of a random variable, i.e., Eξ =
∫

Ω ξ(ω) dP
for a random variable ξ(ω).
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ON THE TRANSFORMATION OF A STATIONARY FUZZY RANDOM PROCESS 425

A fuzzy number with the indices given by (1) is called the fuzzy expectation of an FRV X̃ and
denoted by M(X̃); its indices are denoted by [M(X̃)]±α .

The expectation m(X̃) of an FRV X ∈ X− is defined as the mean of a fuzzy number M(X̃) with
the α-indices M±(α) given by (1):

m(X̃) =
1

2

1
∫

0

(

[M(X̃)]−(α) + [M(X̃)]+(α)
)

dα. (2)

(For details, see [15].)

The covariance of FRVs X̃ and Ỹ is defined as

cov(X̃, Ỹ ) =
1

2

1
∫

0

(

cov(X−
α , Y −

α ) + cov(X+
α , Y +

α )
)

dα, (3)

and the variance of an FRV X̃ is defined as D(X̃) = cov(X̃, X̃) [4]. In the expression (3),
the covariances of real random variables X±

α and Y ±
α are given by the conventional formula

cov(X±
α , Y ±

α )E(X±
α − E(X±

α ))(Y ±
α − E(Y ±

α )) [16, Chapter 14].

The properties of the fuzzy expectations, expectations, covariances, and variances of FRVs were
discussed in [4, 5, 17, Chapter 6].

3. CONTINUOUS RANDOM PROCESSES WITH FUZZY STATES

In Sections 3 and 4, we will use the notion of the limit, continuity, and differentiability of real
random processes in the mean-square (m.s.) sense. Consider the Hilbert space H of real random
variables ξ defined on a probability space (Ω,Σ, P ) that have a finite second moment, i.e., Eξ2 < ∞.

The scalar product and norm in H are given by (ξ, η) = Eξη and ‖η‖ = (ξ, ξ)
1
2 , respectively. Let

ξ(t) be a real random process such that ξ(t) ∈ H ∀ t ∈ [t0, T ]. For this process, m.s. continuity
and m.s. differentiability are defined as the corresponding notions for functions ranging in H
(see [7, Chapter I]).

Let [t0, T ] be an extended segment of the real axis. A continuous random process with fuzzy
states (a fuzzy random process, FRP) X̃(t) is a mapping X̃ : [t0, T ] → X−, i.e., a function X̃(t) =
X̃(ω, t) whose values are FRVs from X− ∀ t ∈ [t0, T ].

We denote by X±
α (ω, t) the α-indices of an FRP X̃(ω, t). Further considerations will focus on the

class of FRPs for which the real functions X±
α (ω, t) are jointly square summable (square summable

in the aggregate of the variables) on Ω× [0, 1] × [t0, T ].

Let the fuzzy expectation M(X̃(t)) = M(X̃(ω, t)) of an FRP X̃(ω, t) ∀ t ∈ [t0, T ] be defined as
the fuzzy expectation (1) of the corresponding FRV with the α-indices equal to

[M(X̃(t))]±α = EX±
α (ω, t), (∀α ∈ [0, 1]). (4)

The properties of the fuzzy expectations of FRVs (see [5, 18]) imply the following result.

Proposition 1. The fuzzy expectations of FRPs possess the following properties:

1. For a nonrandom function z̃ : [t0, T ] → J, M(z̃(t)) = z̃(t).

2. If ϕ : [t0, T ] → R is a nonrandom scalar factor and X̃(t) is an FRP, then M(ϕ(t)X̃(t)) =
ϕ(t)M(X̃(t)).

3. For FRPs X̃(t) and Ỹ (t), M(X̃(t) + Ỹ (t)) = M(X̃(t)) +M(Ỹ (t)).
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426 KHATSKEVICH

According to (2), the expectation of an FRP X̃(t) ∀ t ∈ [t0, T ] is given by

m(X̃(t)) =
1

2

1
∫

0

(

[M(X̃(t))]−α + [M(X̃(t))]+α

)

dα.

Example 1. Let real random processes ξi(ω, t) (i = 1, 2, 3; ω ∈ Ω, t ∈ [t0, T ]) be square summable
on Ω× [t0, T ] and ξ1(ω, t) < ξ2(ω, t) < ξ3(ω, t) for all ω ∈ Ω, t ∈ [t0, T ].

Consider an FRP X̃(t) for which the fuzzy number X̃(ω, t) has the triangular form (ξ1(ω, t),
ξ2(ω, t), ξ3(ω, t)) for all ω ∈ Ω and t ∈ [t0, T ]. In other words, the membership function of X̃(ω, t)
∀ω ∈ Ω, t ∈ [t0, T ] is described by

µω,t(x) =



































x− ξ1(ω, t)

ξ2(ω, t)− ξ1(ω, t)
if x ∈ [ξ1(ω, t), ξ2(ω, t)];

x− ξ3(ω, t)

ξ2(ω, t)− ξ3(ω, t)
if x ∈ [ξ2(ω, t), ξ3(ω, t)];

0 otherwise.

In this case, the α-indices of X̃(t) are

X−
α (t) = (1− α)ξ1(t) + αξ2(t), X+

α (t) = (1− α)ξ3(t) + αξ2(t). (5)

Due to (4) and (5), the fuzzy expectation M(X̃(t)) is given by the following formulas for the
α-indices:

[M(X̃(t))]−α = (1− α)Eξ1(t) + αEξ2(t) (∀α ∈ [0, 1]),

[M(X̃(t))]+α = (1− α)Eξ3(t) + αEξ2(t) (∀α ∈ [0, 1]).

In addition, by (2), the FRP X̃(t) has the expectation

m(X̃(t)) =
1

4
(Eξ1(t) + 2Eξ2(t) + Eξ3(t)).

We proceed to the notion of the covariance function of an FRP and its properties. In accordance
with (3), let the covariance function of an FRP X̃(t) be defined as

KX̃(t, s) = cov(X̃(t), X̃(s)) =
1

2

1
∫

0

(

KX−
α
(t, s) +KX+

α
(t, s)

)

dα. (6)

Here, K
X−

α
(t, s) and K

X+
α
(t, s) represent the covariance functions of the real random processes

X−
α (t) and X+

α (t), respectively, given by

KX±
α
(t, s) = E

(

X±
α (t)− E(X±

α (t))
) (

X±
α (s)− E(X±

α (s))
)

.

The variance of an FRP X̃(t) is DX̃(t) = KX̃(t, t).

Example 2. Within Example 1, let the random processes ξ1(t) and ξ2(t), as well as ξ2(t) and ξ3(t),
be pairwise uncorrelated. Then the covariance functionKX̃(t1, t2) of the FRP X̃(t) of the triangular
form (ξ1(t), ξ2(t), ξ3(t)) is expressed through the covariance functions Kξ1(t1, t2), Kξ2(t1, t2), and
Kξ3(t1, t2) of the random processes ξ1(t), ξ2(t), and ξ3(t), respectively, as follows:

KX̃(t1, t2) =
1

6
{Kξ1(t1, t2) + 2Kξ2(t1, t2) +Kξ3(t1, t2)} .
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Indeed, by formula (5), assuming the uncorrelatedness of ξ1(t) and ξ2(t), for the left index X−
α (t)

of the triangular FRP we obtain

KX−
α
(t1, t2) = (1− α)2Kξ1(t1, t2) + α2Kξ2(t1, t2).

Similarly, based on the uncorrelatedness of ξ3(t) and ξ2(t),

KX+
α
(t1, t2) = (1− α)2Kξ3(t1, t2) + α2Kξ2(t1, t2).

Then definition (6) of the covariance function of an FRP finally leads to the desired conclusion.

According to (6) and the properties of the covariances of real random processes (see [16, Chap-
ter 23]), we arrive at the following result.

Proposition 2. The covariance function of an FRP X̃(t) possesses the following properties:

1. KX̃(t1, t2) = KX̃(t2, t1) ∀ t1, t2 ∈ [t0, T ] (symmetry).

2. Let X̃(t) be an FRP and ϕ(t) be a nonrandom real function. For an FRP Ỹ (t) = ϕ(t)X̃(t),
we have KỸ (t1, t2) = ϕ(t1)ϕ(t2)KX̃(t1, t2) if ϕ(t1)ϕ(t2) > 0.

3. If Ỹ (t) = X̃(t) + ϕ(t), then KỸ (t1, t2) = KX̃(t1, t2).

4. |KX̃(t1, t2)| 6
√

DX̃(t1)DX̃(t2).

An FRP X̃(ω, t) with the α-intervals [X−
α (ω, t),X+

α (ω, t)] is said to be continuous at a point t
if all its α-indices X±

α (ω, t) are continuous in t as scalar random processes in the mean-square
sense [8].

An FRP X̃(ω, t) with the α-indices X−
α (ω, t) and X+

α (ω, t) is said to be Seikkala differentiable
at a point t if all its α-indices are differentiable with respect to t as scalar random processes in the
mean-square sense and the derivatives ∂

∂t
X−

α (ω, t) and ∂
∂t
X+

α (ω, t) are the lower and upper α-indices
of some FRV, respectively, which is called the derivative at the point t [8]. (Compare this definition
with the one for a fuzzy-valued function [19].) In this case, the t-derivative of an FRP X̃(t) will be
denoted by X̃ ′(t) = ∂

∂t
X̃(ω, t).

The second and higher derivatives are sequentially defined in a conventional way.

Remark 1. By the definition of an FRP and the arithmetic properties of fuzzy numbers in the
interval form, the differentiation of FRPs is a linear operation: the derivative of the sum (difference)
of FRPs equals the sum (difference) of the corresponding derivatives, and a constant multiplier can
be factored outside the derivative sign.

Remark 2. The derivative of an FRV (a constant) coincides with the fuzzy number whose left
and right α-indices are zero ∀α ∈ [0, 1].

The next theorem concerns the fuzzy expectation of the derivative of an FRP.

Theorem 1. Let an FRP X̃(t) be differentiable in a domain t ∈ (t0, T ). Then the derivative of
the fuzzy expectation of the FRP X̃(t) is well defined, and the fuzzy expectation of its derivative
equals the derivative of its fuzzy expectation:

MX̃ ′(t) = (MX̃(t))′. (7)

Proof. According to the definitions of the derivative of an FRP and the fuzzy expectation of an
FRP, we write

[M(X̃ ′(t))]±α = E[X̃ ′(t)]±α = E(X±
α )′(t) = (EX±

α (t))′.

The latter equality follows from the corresponding property of real random processes [6, Chap-
ter 6]. Then, using the definition of the Seikkala derivative of the fuzzy-valued function MX̃(t) [19]
and the interval sign of equality of fuzzy numbers, we obtain (7).
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428 KHATSKEVICH

Let us emphasize that (7) is the equality of fuzzy-valued functions. Note that Theorem 1
somewhat strengthens the result from [8].

Corollary 1. Under the hypotheses of Theorem 1, the expectations of an FRP and its derivative
satisfy the relation

mX̃ ′(t) = (mX̃(t))′. (8)

In addition, the following result is valid for the covariance function of the derivative of an FRP.

Theorem 2 [8]. Let the covariance functions of the α-indices X±
α (t) of an FRP X̃(t) have well-

defined second derivatives
∂2K

X
−
α

(t,s)

∂t∂s
and

∂2K
X

+
α

(t,s)

∂t∂s
jointly continuous in the variables t, s, and α.

Then the covariance function KX̃′(t, s) of the derivative X̃ ′(t) of the FRP X̃(t) is given by

KX̃′(t, s) =
∂2KX̃(t, s)

∂t∂s
. (9)

4. STATIONARY FUZZY RANDOM PROCESSES

As is well known, a real random process ξ(t) with E|ξ(t)|2 < ∞, t ∈ [0,∞), is said to be sta-
tionary (in the wide sense) if it has a constant expectation Eξ(t) = a and the covariance function
E[ξ(t) − a][ξ(s)− a] = Kξ(t− s) that depends only on the difference of the arguments; for details,
see [6, Chapter 7; 7, Chapter VII].

We say that an FRP X̃(t), t ∈ [0,∞), is stationary if its α-indices ∀α ∈ [0, 1] are real stationary
random processes.

Example 3. Within Example 2, let all the random processes ξj(t) (j = 1, 2, 3; t ∈ [0,∞)) be
stationary. Then the triangular FRP X̃(t) = (ξ1(t), ξ2(t), ξ3(t)) is stationary.

This fact follows from the expressions for the fuzzy expectations and covariance functions of the
triangular FRP X̃(t) = (ξ1(t), ξ2(t), ξ3(t)) derived in Examples 1 and 2.

Theorem 3. Let X̃(t), t ∈ [0,∞), be a stationary FRP. Then its fuzzy expectation M(X̃(t)) and
expectation m(X̃(t)) are constant, and the covariance function KX̃(t1, t2) = KX̃(t2 − t1) depends
on the difference (t2 − t1) = τ of the arguments.

Proof. Assume that X̃(t) is a stationary FRP. We denote by m±
α the constant expectations of

the α-indices X±
α (t) of the FRP X̃(t) ∀α ∈ [0, 1]. By definition (3), they are the α-indices of the

fuzzy expectation M±
α = m±

α . Then the fuzzy expectation M(X̃(t)) is constant, and the expectation
m(X̃(t)) = 1

2

∫ 1
0 (m

+
α +m−

α )dα is constant as well.

We denote by KX±
α
(t1, t2) the covariance functions of the α-indices, i.e., those of the real ran-

dom processes X±
α (t). According to the assumption, X±

α (t) is a stationary random process; hence,
K

X±
α
(t1, t2) = K

X±
α
(t2 − t1). In this case, by definition (6), the covariance function KX̃(t1, t2) of

the FRP X̃(t) depends on the difference (t2 − t1) = τ of the arguments.

Theorem 4. The covariance function KX̃(τ) of a stationary FRP X̃(t) possesses the following
properties:

1. KX̃(τ) = KX̃(−τ) (evenness).

2. The variance of the stationary FRP X̃(t) is constant and equals DX̃ = KX̃(0).

3. |KX̃(τ)| 6 KX̃(0) (∀ τ ∈ R).

Theorem 4 follows from the corresponding properties of the covariance functions K
X−

α
(τ) and

KX+
α
(τ) of the α-indices (see [16, Chapter 24]) and the representation (6).

For stationary FRPs, Theorem 2 can be refined as follows.
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ON THE TRANSFORMATION OF A STATIONARY FUZZY RANDOM PROCESS 429

Theorem 5. Under the conditions of Theorem 2, the covariance function of the derivative X̃ ′(t)
of a differentiable stationary FRP X̃(t) equals the second derivative of its covariance function taken
with the minus sign: KX̃′(τ) = −K ′′

X̃
(τ).

Proof. Due to formula (9), ∀ t1, t2 ∈ [0,∞) we have

KX̃′(t1, t2) =
∂2KX̃(t1, t2)

∂t1∂t2
.

By the assumption, X̃(t) is a stationary FRP. According to Theorem 3, its covariance function
depends on the difference of the arguments: KX̃(t1, t2) = KX̃(τ), where τ = (t2−t1). Consequently,

KX̃′(t1, t2) =
∂2KX̃(τ)

∂t1∂t2
=

∂

∂t1

(

∂KX̃(τ)

∂t2

)

=
∂

∂t1

(

∂KX̃(τ)

∂τ

∂τ

∂t2

)

=
d2KX̃(τ)

dτ2
∂τ

∂t1
= K ′′

X̃
(τ)(−1) = −K ′′

X̃
(τ).

In these formulas, we have utilized the equalities ∂τ
∂t1

= −1 and ∂τ
∂t2

= 1. Thus, the covariance

function of the FRP X̃ ′(t) depends only on the difference of the arguments, and the desired con-
clusion follows.

Proposition 3. The derivative X̃ ′(t) of a stationary differentiable FRP X̃(t), t ∈ [0,∞), is a
stationary FRP.

Indeed, by the condition, the α-indices X±
α (t), t ∈ [0,∞), of the FRP X̃(t) are real stationary

random processes ∀α ∈ [0, 1]. Then, based on the well-known property of real stationary pro-
cesses [6, Chapter 7], their derivatives (X±

α )′(t) are such as well. Therefore, Proposition 3 is
immediate from the definition of the differentiability of FRPs.

Proposition 4. Let Ỹ (t), t ∈ [0,∞), be a stationary FRP k times differentiable on (0,∞) and at
least one of given constants bs > 0 (s = 0, 1, . . . , k) be nonzero. Then the linear combination of the
derivatives, Z̃(t) =

∑k
s=0 bsỸ

(s)(t), is a stationary FRP.

Indeed, under the hypotheses of Proposition 4, the left and right indices Z±
α (t) of the FRP Z̃(t)

∀α ∈ [0, 1] have the form

Z±
α (t) =

[

k
∑

s=0

bs(Ỹ )(s)(t)

]±

α

=
k
∑

s=0

bs(Y
±
α (t))(s).

Here, we have utilized the definition of the derivatives of FRPs and the properties of the arithmetical
operations over fuzzy numbers in the interval form.

Since Y ±
α (t) are stationary real processes, by the well-known result for such processes [6, Chap-

ter 7], Z±
α (t) are stationary real random processes, and Proposition 4 is proved accordingly.

5. THE SPECTRAL DENSITY OF A STATIONARY FRP.
THE GENERALIZED WIENER–KHINCHIN THEOREM

Consider the spectral representation problem of the covariance function of a stationary FRP.

The following result is well-known for a real stationary random process ξ(t) defined on an infinite
time interval [0,∞); for example, see [6, Chapter 7; 7, Chapter VII].

Lemma 1 (the Wiener–Khinchin theorem). The covariance function Kξ(τ) and spectral density
Sξ(τ) of a real stationary random process ξ(t) are related by the self-reciprocal inverse Fourier
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430 KHATSKEVICH

cosine transforms:

Kξ(τ) =

∞
∫

0

Sξ(ω) cosωτdω, Sξ(ω) =
2

π

∞
∫

0

Kξ(τ) cos ωτdτ. (10)

Remark 3 [7, Chapter VII. ] The existence of the spectral density Sξ(ω) of a real stationary
random process ξ(t) and the relations (10) are ensured, e.g., by the continuity of the covariance
function Kξ(τ) of the process ξ(t) and its summability on (0,∞) (i.e.,

∫∞
0 |Kξ(τ)|dτ < ∞).

Now we generalize Lemma 1 to the case of stationary FRPs. Let a stationary FRP X̃(t) defined
on [0,∞) have the α-indices X±

α (t), and let SX±
α
(ω) be the spectral densities of the stationary

random processes X±
α (t) (∀α ∈ [0, 1]) such that the functions S

X±
α
(ω) are summable in α on [0, 1].

We call the function

SX̃(ω) =
1

2

1
∫

0

(

SX+
α
(ω) + SX−

α
(ω)

)

dα (11)

the spectral density of a stationary FRP X̃(t).

Example 4. Within Example 3, we denote by Sξi(ω) the spectral densities of the real stationary
random processes ξi(t) (i = 1, 2, 3). Then the spectral density of the stationary FRP X̃(t) of the
triangular form (ξ1(t), ξ2(t), ξ3(t)) is given by

SX̃(ω) =
1

6
(Sξ1(ω) + 2Sξ2(ω) + Sξ3(ω)) .

Indeed, let us denote by Kξi(τ) the covariance functions of the real random processes ξi(t). Due
to (5) and the pairwise uncorrelatedness of the random processes ξ1(t) and ξ2(t), as well as of ξ2(t)
and ξ3(t), for the covariance functions of the α-indices X±

α (t) of the FRP X̃(t) we write

KX−
α
(τ) = (1− α)2Kξ1(τ) + α2Kξ2(τ),

KX+
α
(τ) = (1 − α)2Kξ3(τ) + α2Kξ2(τ).

Then, based on formulas (10) for the spectral densities of the real stationary random pro-
cesses X±

α , it follows that

SX−
α
(ω) = (1− α)2Sξ1(ω) + α2Sξ2(ω),

SX+
α
(ω) = (1− α)2Sξ3(ω) + α2Sξ2(ω).

Therefore, according to (11), the spectral density of the FRP X̃(t) of the triangular form
(ξ1(t), ξ2(t), ξ3(t)) is given by

SX̃(ω) =
1

2





1
∫

0

(1− α)2dαSξ1(ω) +

1
∫

0

α2dαSξ2(ω) +

1
∫

0

(1− α)2dαSξ3(ω) +

1
∫

0

α2dαSξ2(ω)





=
1

6
(Sξ1(ω) + 2Sξ2(ω) + Sξ3(ω)) ,

which finally implies Proposition 4.

The next result is valid by definition (11) and the properties of the spectral densities of real
stationary random processes (see [16, Chapter 24]).
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Proposition 5. The spectral density of a stationary FRP possesses the following properties:

1. The spectral density of a stationary FRP X̃(t) is nonnegative, i.e., SX̃(ω) > 0.

2. Integrating the spectral density of a stationary FRP X̃(t) over ω between zero and infinity
gives the variance of the FRP X̃(t), i.e.,

∫∞
0 SX̃(ω)dω = DX̃ .

The appropriateness of the above definition (11) is confirmed by the generalized Wiener–
Khinchin theorem established below.

Theorem 6. Let X̃(t), t ∈ [0,∞), be a stationary FRP such that the covariance function KX±
α
(τ)

and spectral density SX±
α
(ω) are well-defined for its α-indices X±

α (t) for any α ∈ [0, 1] and, more-
over, are jointly summable on [0,∞) × [0, 1]. Then the covariance function and spectral density of
the stationary FRP X̃(t) are related by the self-reciprocal inverse Fourier cosine transforms:

KX̃(τ) =

∞
∫

0

SX̃(ω) cos ωτdω, SX̃(ω) =
2

π

∞
∫

0

KX̃(τ) cos ωτdτ. (12)

Proof. We begin with deriving the first formula in (12). For stationary real processes X±
α (t),

by Lemma 1, K
X−

α
(τ) =

∫∞
0 S

X−
α
(ω) cos ωτdω and K

X+
α
(τ) =

∫∞
0 S

X+
α
(ω) cos ωτdω. Summing both

sides of these equalities and integrating the resulting expression over α between 0 and 1 yield
∫ 1
0 (KX−

α
(τ) +KX+

α
(τ))dα =

∫ 1
0

∫∞
0 (SX−

α
(ω) + SX+

α
(ω)) cos ωτdωdα. Changing the order of integra-

tion on the right-hand side (based on Fubini’s theorem) and using (6) and (11), we finally arrive
at the desired formula for KX̃(τ).

In addition, according to Lemma 1, S
X±

α
(ω) = 2

π

∫∞
0 K

X±
α
(τ) cos ωτdτ. In view of (6) and (11),

similar considerations as above lead to the second formula in (12).

Example 5. Within Example 4, by Theorem 6, the covariance function KX̃(t) of the triangular

stationary fuzzy random process X̃(t) = (ξ1(t), ξ2(t), ξ3(t)) is given by

KX̃(τ) =
1

6

∞
∫

0

(Sξ1(ω) + 2Sξ2(ω) + Sξ3(ω)) cosωτdω =
1

6
{Kξ1(τ) + 2Kξ2(τ) +Kξ3(τ)} ,

where Kξi(τ) (i = 1, 2, 3) denote the covariance functions of the real stationary random pro-
cesses ξi(t).

Note that this result agrees with Example 2.

6. ON THE TRANSFORMATION OF A STATIONARY FRP
BY A LINEAR DYNAMIC TIME-INVARIANT SYSTEM

Suppose that a random signal ξ(t) is supplied to the input of some device, and a random
signal η(t) is accordingly observed at its output. The device is called a linear dynamic time-invariant
system of the nth order if the output η(t) and input ξ(t) are related by a linear differential equation
of the nth order with constant coefficients of the form

anη
(n)(t) + an−1η

(n−1)(t) + · · ·+ a1η
′(t) + a0η(t)

= bkξ
(k)(t) + bk−1ξ

(k−1)(t) + · · · + b1ξ
′(t) + b0ξ(t) (t > 0). (13)

Here, aj (j = 0, 1, . . . , n) and bs (s = 0, 1, . . . , k) are real numbers, and k < n.

If the dynamic system (13) is asymptotically stable and a real stationary random process ξ(t)
is supplied to its input, then the output random process η(t) can be considered stationary for
sufficiently large values of t, i.e., after some transient period. The problem of establishing the
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relationship between the numerical characteristics (expectations and covariance functions) of the
input and output real stationary random signals of the dynamical system (13) is widely known in
the literature; for example, see [6, Chapter 7].

Suppose that a stationary FRP Ỹ (t) is supplied to the input of the dynamic system (13) and a
stationary FRP X̃(t) is accordingly observed at its output.

It is required to calculate the characteristics of the output stationary FRP X̃(t) from the known
characteristics of the input stationary FRP Ỹ (t) of the dynamic system (13).

Consider the problem of calculating the constant fuzzy expectationMX̃ (or the expectation mX̃)
at the output of system (13) from the known constant fuzzy expectation MỸ (or the expecta-
tion mỸ ) at its input.

Proposition 6. Let a stationary k times differentiable FRP Ỹ (t), t ∈ [0,∞), be supplied to the
input of the dynamic system (13) and a stationary n times continuously differentiable FRP X̃(t),
t ∈ [0,∞), be accordingly observed at its output. Then

MX̃ =
b0

a0
MỸ , mX̃ =

b0

a0
mỸ .

Indeed, by the condition,

anX̃
(n)(t) + an−1X̃

(n−1)(t) + · · ·+ a1X̃
′(t) + a0X̃(t)

= bkỸ
(k)(t) + bk−1Ỹ

(k−1)(t) + · · ·+ b1Ỹ
′(t) + b0Ỹ (t) (t > 0). (14)

We equate the fuzzy expectations of the left- and right-hand sides of (14). Based on the alge-
braic properties of fuzzy expectations (Proposition 1) and the properties of the derivative of fuzzy
expectations (Theorem 1), it follows that

an(MX̃)(n)(t) + an−1(MX̃)(n−1)(t) + · · ·+ a1(MX̃)′(t) + a0MX̃(t)

= bk(MỸ )(k)(t) + bk−1(MỸ )(k−1)(t) + · · · + b1(MỸ )′(t) + b0MỸ (t). (15)

Since the fuzzy expectations of the stationary FRPs Ỹ (t) and X̃(t) are constant, their derivatives
of any order equal a fuzzy number whose left and right indices are all zero (see Remark 2). Then (15)
entails the equality

a0MX̃ = b0MỸ ,

and, consequently, MX̃ = b0
a0
MỸ . By analogy, we establish mX̃ = b0

a0
mỸ for their expectations.

Next, using the known covariance function KỸ (τ) of the input stationary FRP Ỹ (t) of the dy-
namic system (14), we find the covariance function KX̃(τ) and variance DX̃ of its output stationary

FRP X̃(t).

Theorem 7. Let the coefficients of the dynamic system (14) be nonnegative, i.e., aj > 0 (j =
0, 1, . . . , n), bs > 0 (s = 0, 1, . . . , k). Let a k times continuously differentiable FRP Ỹ (t), t ∈ [0,∞),
be supplied to the input of the dynamic system (14), and let the covariance functions KY ±

α
(τ) and

spectral densities S
Y ±
α
(ω) be well defined for its α-indices Y ±

α (t) for any α ∈ [0, 1] and, moreover,
be jointly summable on [0,∞) × [0, 1].

Let an n times continuously differentiable FRP X̃(t), t ∈ [0,∞), be accordingly observed at the
output of the dynamic system (14). Then the algorithm for calculating (in real form) the covariance
function KX̃(τ) of the output stationary FRP X̃(t) includes the following stages:
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1) Find the spectral density SỸ (ω) of the input stationary FRP Ỹ (t) from its covariance function
KỸ (τ) using the generalized Wiener–Khinchin formula (12):

SỸ (ω) =
2

π

∞
∫

0

KỸ (τ) cos ωτdτ. (16)

2) Find the frequency response Φ(iω) for the differential equation (14):

Φ(iω) =
bk(iω)

k + · · ·+ b1(iω) + b0

an(iω)n + · · ·+ a1(iω) + a0
, (17)

where i indicates the imaginary unit.

3) Find the spectral density SX̃(ω) of the output stationary FRP X̃(t) from the spectral density

SỸ (ω) of the input stationary FRP Ỹ (t) and the squared absolute value |Φ(iω)|2 of the frequency
response (17):

SX̃(ω) = |Φ(iω)|2SỸ (ω). (18)

4) Find the covariance function KX̃(τ) and (or) variance DX̃ of the output stationary FRP

X̃(t) from its spectral density SX̃(ω) (18) using the generalized Wiener–Khinchine formula (12):

KX̃(τ) =

∞
∫

0

SX̃(ω) cos ωτdω, DX̃ =

∞
∫

0

SX̃(ω)dω. (19)

Proof. Due to equation (14), the definition of derivatives for FRPs, the assumption on the
positive coefficients ak and bs, and the definition of summation for fuzzy numbers in the interval
form, for the α-indices X±

α (t) and Y ±
α (t) of the FRPs X̃(t) and Ỹ (t), respectively, we have

an(X
±
α )(n)(t) + an−1(X

±
α )(n−1)(t) + · · ·+ a1(X

±
α )′(t) + a0X

±
α (t) (20)

= bk(Y
±
α )(k)(t) + bk−1(Y

±
α )(k−1)(t) + · · · + b1(Y

±
α )′(t) + b0Y

±
α (t) (t > 0).

By the hypothesis of this theorem, the α-indices Y ±
α (t) and X±

α (t) are real stationary random
processes for t ∈ [0,∞). For each pair of real stationary processes Y ±

α (t) and X±
α (t) related by

the dynamic system (20), we apply the well-known algorithm consisting of Stages 1)–4) (see [6,
Chapter 7]).

First, for any α ∈ [0, 1], we find the spectral density SY ±
α
(ω) of the input random process Y ±

α (t)
of the dynamic system (20) from its covariance function KY ±

α
(τ) using (10):

SY ±
α
(ω) =

2

π

∞
∫

0

KY ±
α
(τ) cosωτdτ.

Next, using the frequency response Φ(iω), we calculate the spectral densities of the output
stationary real random processes X±

α (t) by the formulas

SX±
α
(ω) = |Φ(iω)|2SY ±

α
(ω).

In view of (11), this result implies (18).
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We proceed with determining the covariance functions

K
X±

α
(τ) =

∞
∫

0

S
X±

α
(ω) cosωτdω

of the output real stationary random processes X±
α (t) of the dynamic system (20).

After that, we apply the above definitions of the covariance function (6) and spectral density (11)
of the stationary FRPs:

KX̃(τ) =
1

2

1
∫

0

(K
X−

α
(τ) +K

X+
α
(τ))dα =

1

2

1
∫

0





∞
∫

0

(S
X+

α
(ω) + S

X−
α
(ω)) cos ωτdω



 dα.

Changing the order of integration based on Fubini’s theorem gives

KX̃(τ) =

∞
∫

0





1

2

1
∫

0

(SX+
α
(ω) + SX−

α
(ω))dα



 cosωτdω =

∞
∫

0

SX̃(ω) cos ωτdω.

Thus, the first formula in (19) has been derived. The formula for the variance DX̃ follows from
the former one since DX̃ = KX̃(0).

Remark 4. Equation (20) can be interpreted as an equation in the Hilbert space H of random
variables with a finite second moment. If the real parts of all roots of the characteristic equation
anλ

n+ an−1λ
n−1+ · · ·+ a0 = 0 are negative, then equation (20) is asymptotically Lyapunov stable

in the space H (see [21, Chapter II]).

Remark 5. Equation (15) is essentially a fuzzy differential equation. Such equations were con-
sidered in [19, 22]. Equation (14) is a fuzzy random equation; for details, see [23–25].

Example 6. Let an FRP of the triangular form Ỹ (t) = (ξ1(t), ξ2(t), ξ3(t)) be supplied to the
input of the linear dynamic system (13), where the real random processes ξi(t) (i = 1, 2, 3) satisfy
the conditions of Example 4. Then, according to Example 3, the FRP Ỹ (t) is stationary. Due to
Example 2, its covariance function has the form

KỸ (τ) =
1

6
{Kξ1(τ) + 2Kξ2(τ) +Kξ3(τ)},

where Kξi(τ) (i = 1, 2, 3) are the covariance functions of the real random processes ξi(t).

Moreover, according to Example 4, the spectral density of the input stationary triangular FRP
Ỹ (t) = (ξ1(t), ξ2(t), ξ3(t))SỸ (ω) of the dynamic system (13) is given by

SỸ (ω) =
1

6
(Sξ1(ω) + 2Sξ2(ω) + Sξ3(ω)),

where Sξi(ω) (i = 1, 2, 3) are the spectral densities of the real random processes ξi(t).

Finally, using Theorem 7, we find the spectral density of the output stationary FRP X̃(t) of the
dynamic system (13):

SX̃(ω) = |Φ(iω)|2SỸ (ω) =
1

6
|Φ(iω)|2{Sξ1(ω) + 2Sξ2(ω) + Sξ3(ω)},

where Φ(iω) is the frequency response of system (13). By Theorem 7, the covariance function
KX̃(τ) of the output FRP X̃(t) of the dynamic system has the form

KX̃(τ) =
1

6

∞
∫

0

|Φ(iω)|2(Sξ1(ω) + 2Sξ2(ω) + Sξ3(ω)) cos ωτdω.
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7. CONCLUSIONS

Theorems 3–7, as well as Propositions 3–6, form the essential content and scientific contribution
of this paper. We emphasize the significance of the concept of the spectral density of a stationary
FRP (Theorem 6) and the algorithm for calculating the covariance function of a stationary FRP
at the output of a dynamic system from the covariance function of a stationary FRP at its input
(Theorem 7). Examples 1–6 have illustrated the applicability of the novel theory to triangular
FRPs.

The results of this work can be developed in the following directions:

1. They will remain valid if the covariance of fuzzy random variables from [5] is used instead of
definition (3).

2. As is known [7], the Wiener–Khinchin theorem for real random processes (Lemma 1) can
be written in a more general form: for this purpose, the spectral distribution function and the
Riemann–Stiltjes integral should be considered instead of the spectral density and the Riemann
integral.

The generalized Wiener–Khinchin theorem (Theorem 6) can be developed in this direction for
stationary fuzzy random processes.

3. It is possible to extend some results of this paper to the case of generalized fuzzy numbers
(see [26]).
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